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Control Invariant Sets of Linear Systems with Bounded Disturbances
Shuyou Yu, Yu Zhou, Ting Qu, Fang Xu, and Yan Ma*

Abstract: In this paper, algorithms to compute robust control invariant sets are proposed for linear continuous-time
systems subject to additive but bounded disturbances. Robust control invariant sets of linear time invariant systems
are achieved by logarithmic norm. Robust control invariant sets of linear uncertain systems, which are level sets of
the storage functions, are obtained by solving functional differential inequality. Simulation shows that the proposed
algorithms can yield improved minimal volume robust control invariant sets approximations in comparison with the
schemes in the existing literature.
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1. INTRODUCTION

Robust control invariant set refers to a bounded state
space region in which the system state can be con-
fined, despite the presence of disturbances or uncertain-
ties, through the application of a control law [1–3]. Invari-
ant set plays an important role in the robustness analysis
and synthesis of controllers for uncertain systems [4–9].
Furthermore, terminal set, which is an invariant set of con-
sidered systems under a control law, is needed in the for-
mulation of model predictive control [11, 12]. Both recur-
sive feasibility and asymptotic stability can be assured by
the appropriately chosen terminal set and terminal control
law [13–16]. The existence of stabilizing control laws for
discrete-time linear constrained system on controlled in-
variant sets is proved in [10].

The effect of disturbances or perturbations is a common
issue in the analysis and synthesis of dynamical systems.
In a typical situation, the value of the perturbations or dis-
turbances is unknown but bounded. If the perturbations
or disturbances are non-vanishing, i.e., do not disappear
while time goes to infinite, asymptotic stability cannot be
achieved in general. However, under certain conditions,
ultimate boundedness or robust control invariance can be
guaranteed. Recently, many research efforts have been de-
voted to computing robust invariant sets. The approxima-
tion of the minimal robust invariant set for an asymptot-
ically stable discrete time linear system is considered in
[17], which allows one to a priori specify the accuracy
of the approximation. A procedure and theoretical results
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are presented for the problem of determining a minimal
robust control invariant set for a linear discrete-time sys-
tem subject to unknown and bounded disturbances, where
the procedure computes via the solving of a linear pro-
gramming [18]. A family of parameterized robust control
invariant sets for linear discrete time systems subject to
additive but bounded disturbances is characterized in [19],
where the existence of a member of the introduced family
of parameterized robust control invariant sets can be veri-
fied by solving a tractable convex optimization problem in
the linear convex case. Nonlinear control law (piecewise
affine in the most frequently encountered cases), rather
than linear control law [17], is adopted in [20], where the
existence of two families of robust control invariant sets
is established. The problem of evaluating robust control
invariant sets for linear discrete time systems subject to
state and input constraints as well as additive disturbances
is considered in [21], where a numerically efficient algo-
rithm for the computation of full-complexity polytopic ro-
bust control invariant sets are presented. A method is pre-
sented in [22] for determining robust invariant sets and as-
sociated linear feedback laws for discrete-time linear sys-
tems with polytopic uncertainty. The problem of comput-
ing a maximal controlled invariant low-complexity poly-
topic set is then formulated as a bilinear constrained prob-
lem, and a relaxation of this problem is derived as an it-
erative sequence of convex programs. An algorithm is
proposed in [2] to compute robust control invariant sets
for linear discrete-time systems subject to norm-bounded
model uncertainties, additive disturbances and polytopic
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constraints on the input and state. The proposed scheme
explicitly takes account of norm-bounded model uncer-
tainty and does not require any iterative computations or
initial estimates of the invariant set. The construction of
robust control invariant sets of systems with matched non-
linearity and a particular class of piecewise affine systems
are exploited in [23]. The maximum controlled invari-
ant set for discrete as well as continuous time nonlinear
dynamical systems are characterized as the solution of a
finite-dimensional linear programming problem [24, 25].
The problem of determining the maximal contractively
invariant ellipsoids for discrete time systems with multi-
ple inputs under saturated linear feedback is considered in
[26]. An algebraic computational approach to determining
such maximal contractively invariant ellipsoids are pro-
posed. A real function is called a D. C. function if it is a
difference of two convex functions. A method for comput-
ing a convex robust control invariant set for discrete-time
nonlinear uncertain systems is presented in [27], which re-
sorts to the properties of D. C. functions. The ellipsoidal
invariant set of fractional order systems subject to actua-
tor saturation is investigated in [28], where the lyapunov
direct approach and fractional order inequality are applied
to.

In this paper, algorithms for computing robust control
invariant sets are proposed. Exploiting the properties of
logarithmic norm, a sufficient condition for computing the
robust control invariant set of linear time-invariant sys-
tems is provided. Based on a functional inequality, robust
control invariant sets of linear systems with perturbations
and disturbances are considered. The proposed methods
are interesting for two reasons. On one hand, it indicates
further that robust control invariant sets are useful tool for
controller synthesis of linear uncertain systems, and guar-
antees robust stability for an adequate set of initial condi-
tions. On the other hand, it provides a fairly simple algo-
rithmic procedure.

This paper is organized as follows. Section 2 includes
problem setup, and the definition of robust (control) in-
variant sets. Section 3 deals with the problem of calculat-
ing robust control invariant sets for linear time-invariant
system by logarithmic norm. Section 4 reviews a gen-
eral scheme to compute robust control invariant sets, and
discusses robust control invariant sets of linear uncertain
systems, namely polytopic and norm-bounded uncertain
systems. Finally, Section 6 concludes the paper.

1.1. Notations and basic definitions

Let R denote the field of real numbers, Rn the n-
dimensional Euclidean space, Z the set of integer num-
bers. For a vector v ∈ Rn, ∥v∥ denotes the 2-norm. Sup-
pose that M ∈ Rn×n, λmin(M) (λmax(M)) is the smallest
(largest) real part of eigenvalues of the matrix M. More-
over, the symbol ⋆ is used to denote the symmetric part

of a matrix, i.e.,
[

a bT

b c

]
=

[
a ⋆
b c

]
. The term Co{·} de-

notes the convex hull of a set. For a symmetric matrix
X ∈ Rn×n, let X ≻ 0(X ⪰ 0) denote that X is a positive
(semi-) definite matrix, and X ≺ 0(X ⪯ 0) denote that X is
a negative (semi-) definite matrix.

2. PROBLEM SETUP

Consider the following linear uncertain systems:

ẋ(t) =(A+∆A)x(t)+(B+∆B)u(t)

+(Bw +∆Bw)w(t), (1)

where x(t) ∈ Rnx is the state of the system, u(t) ∈ Rnu the
control input. The signal w(t) ∈Rnw is the exogenous dis-
turbance or uncertainty, which is unknown but bounded,
and lies in a compact set

W := {w ∈ Rnw | ∥w∥ ≤ wmax} ,

i.e., w(t) ∈ W for all t ≥ 0. The system matrices A ∈
Rnx×nx , B ∈Rnx×nu and Bw ∈Rnx×nw are constant matrices,
∆A ∈ Rnx×nx , ∆B ∈ Rnx×nu and ∆Bw ∈ Rnx×nw are compati-
ble uncertain matrices.

Note that F(x) := (A + ∆A)x + (B + ∆B)u + (Bw +
∆Bw)w is a real-valued functional or a differential inclu-
sion rather than a function [29]. Accordingly, the linear
time invariant system

ẋ(t) = Ax(t)+Bu(t)+Bww(t) (2)

is the nominal system of the given system (1).
Next, the definition of robust control invariant set and a

technical assumption are introduced. It shows that a robust
(control) invariant set is a region where the trajectory gen-
erated by the dynamical systems (under control) remains
confined in the region if the initial state lies in it.

Definition 1 [5]: A set Ω ⊂ Rn is a robust control in-
variant set for the system (1) if there exists a feedback
control law κ(·) such that for all x(t0) ∈ Ω, x(t) ∈ Ω for
all w ∈W and for all t ≥ t0.

Furthermore, if the control law κ(·) is determined a pri-
ori, Ω is a robust invariant set of the closed-loop system.

Assumption 1: The pair (A,B) is stabilizable.

Remark 1: For the nominal systems ẋ = Ax(t) +
Bu(t)+Bww(t), there exists a linear control law Kx such
that A+BK is Huiwitz.

3. ROBUST CONTROL INVARIANT SETS
BASED ON LOGARITHMIC NORM

In this section, the concept and characterization of log-
arithmic norm are introduced. After that the scheme to
obtain robust control invariant sets based on logarithmic
norm is discussed.



624 Shuyou Yu, Yu Zhou, Ting Qu, Fang Xu, and Yan Ma

The logarithmic norm of a real matrix M is defined as
[30, 31]

µ(M) = lim
h→0+

∥I +hM∥−1
h

, (3)

where the symbol ∥·∥ represents any matrix norm defined
in the inner product space with an inner product ⟨x,y⟩, and
I is the dimensional compatible identity matrix. Note that
the name of logarithmic norm is original from estimating
the logarithm of the norm of solutions to the differential
equation ẋ = Mx, i.e.,

d
dt+

log∥x∥ ≤ µ(M) or
d

dt+
∥x∥ ≤ µ(M)∥x∥,

where d/dt+ is the upper right Dini derivative. That is,
the maximal growth rate of log∥x∥ is µ(M).

For the standard inner product ⟨x,y⟩ := xT y, the loga-
rithmic norm of the matrix M is given by [32]

µ2(M) = sup
∥x∥=1

⟨x,Mx⟩, (4)

which is equivalent to

µ2(M) = λmax

(
M+MT

2

)
.

Remark 2: If the standard inner product ⟨x,y⟩ = xT y
is adopted, there is no guarantee that there exists a ma-
trix K ∈ Rnu ×Rnx such that µ2 (A+BK)≤ 0 for any pair
(A,B) even if (A,B) is stabilizable. Thus, in the following
the inner product ⟨x,y⟩ := xT Hy is introduced, where H is
a positive definite matrix.

Suppose that x,y are finitely many dimensions, and
⟨x,y⟩ := xT Hy, where H is a positive definite matrix, then

µH(M) = max
{

λ | det(MT H +HM−2λH) = 0
}
,
(5)

where det(·) is the determinant of a given matrix [32].
Eq. (5) specifies µH(M) as a solution to a generalized
eigenvalue problem. If H = I, µH(M) becomes µ2(M).

For the sake of computation purposes, Eq. (5) can be re-
formulated as the form of the following matrix inequality:

µH(M) = min
{

β | MT H +HM−2βH ⪯ 0
}
. (6)

Next lemma collects a subset of well-known results,
whose proof can be found in [31,32], or reference therein.

Lemma 1: Let M and N be square matrices, and λ> 0.
Then

- µ(λM) = λ µ(M),

- µ(M+N)≤ µ(M)+µ(N),

- ∥eMt∥ ≤ eµ(M)t .

It concludes immediately from Lemma 1 that ∥eMt∥ ≤
1 for all nonnegative t if and only if µ(M) ≤ 0 [31, 32].
Eq. (4) together with Eq. (5) show that logarithmic norm
is not a real norm since it can be negative in some cases.

Since (A,B) is stabilizable, there exist a state feed-
back matrix K ∈ Rnu×nx and positive matrix P ∈ Rnx×nx

such that (A+BK)T P+P(A+BK) ⪯ 0 [33]. Compared
with Eq. (6), µp(A+BK)≤ 0, i.e., ∥e(A+BK)t∥p ≤ 1 while
(A+BK)T P+P(A+BK)⪯ 0.

For simplicity, denote Acl := A+BK. The evolution of
system (2) under the control law u := Kx can be written as

x(t) = eAcltx(0)+
∫ t

0
eAcl(t−τ)Bww(τ)dτ, (7)

where x(0) is the initial state of the system (2).
The exogenous disturbance w(t) is bounded in the in-

ner space ⟨x,x⟩ := xT Px, that is ∥w∥p ≤ wp,max in terms
of the equivalent induced matrix norm, where wp,max is a
given scalar. For example, if ⟨x,y⟩= xT Py, then wp,max ≤√

λmax(P)wmax.
The following theorem provides a way to construct ro-

bust control invariant sets of system (2).

Theorem 1: Consider system (2). Suppose that there
exist K ∈ Rnu×nx and a positive definite matrix P ∈ Rnx×nx

such that µp(Acl)< 0. Then, the set

Ω0 :=
{

x ∈ Rnx | ∥x∥p ≤
∥Bw∥pwp,max

−µp (Acl)

}
(8)

is a robust invariant set of the system (2).

Proof: The inequality ∥eAclt∥p ≤ eµp(Aclt) is used to es-
timate the solution (7):

∥x(t)∥p ≤
∥∥eAcltx(0)

∥∥
p +

∫ t

0

∥∥∥eAcl(t−τ)Bww(τ)
∥∥∥

p
dτ

≤eµp(Aclt)∥x(0)∥p

+
(

1− eµp(Aclt)
) ∥Bw∥pwp,max

−µp (Acl)

=eµp(Aclt)
(
∥x(0)∥p −

∥Bw∥pwp,max

−µp (Acl)

)
+

∥Bw∥pwp,max

−µp (Acl)
.

Thus, if x(0) ∈ Ω0, then x(t) ∈ Ω0 for all t≥ 0. Therefore,
Ω0 is an invariant set of system (2). □

Remark 3: If there exists a matrix K ∈ Rnu ×Rnx such
that µ2 (A+BK) ≤ 0 for the pair (A,B), then the closed-
loop system has the “optimal" transient behavior since∥∥eAclt

∥∥≤ Meµ2(A+BK)t with M = 1.

The above discussion also gives a valuable insight into
part b) of Problem 1, in the chapter of “Problem 6.3" [34],
for the system which has the property of µ2 (A+BK)≤ 0.
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Theorem 1 shows that there exist control invariant sets,
if the corresponding nominal systems are exponentially
stable. In the next section, robust control invariant sets
of linear systems with uncertainties are considered.

4. ROBUST CONTROL INVARIANT SETS
BASED ON DIFFERENTIAL INEQUALITY

Definition 2 [33]: A continuous function α : [0,a) →
[0,∞) is said to belong to class K if it is strictly increasing
and α(0) = 0. It is said to belong to class K∞ if a = ∞ and
α(r)→ ∞ as r → ∞.

Lemma 2 [35]: Let S : Rnx → [0,∞) be a continuously
differentiable function and α1(∥v∥) ≤ S(v) ≤ α2(∥v∥).
Suppose there exist α > 0 and µ > 0 such that

d
dt

S(v)+αS(v)−µwT w ≤ 0, ∀w ∈W, (10)

where α1, α2 are class K∞ functions. Then, for a general
nonlinear systems v̇ = f (v,w), the system trajectory will
remain in the set Ω if v(t0)∈Ω, where f (·, ·) is a Lipschitz
function on v and w, and

Ω :=
{

v ∈ Rnx | S(v)≤ µw2
max

α

}
. (11)

The following proof gives an interpretation of Lemma 2
from the optimization theory perspective.

Proof: For nonlinear systems v̇ = f (v,w), v /∈ Ω is
equivalent to S(v) > µwmax

α , and w ∈ W is equivalent to
w(t)T w(t) ≤ w2

max for all t ≥ 0. In accordance with S-
procedure [29], it is sufficient for Ṡ(v) ≤ 0 for all x /∈ Ω
and for all w ∈W , if it holds that

− dS(v)
dt

−α
(

S(v)− µw2
max

α

)
−µ

(
w2

max −w(t)T w(t)
)

≥ 0,

with µ > 0 and α > 0. That is, d
dt S(v)+αS(v)−µwT w ≤

0 for all w(t) ∈W . □

4.1. Robust control invariant sets of linear uncertain
systems

Our goal in this subsection is to find a robust control in-
variant set for the given differential inclusion (1).

4.1.1 Polytopic model of linear uncertain systems
If [A+∆A,B+∆B,Bw +∆Bw] ∈ Σ, where

Σ := Co
{[

A1 B1 Bw,1
]
, . . . ,

[
AN BN Bw,N

]}
,

(12)

then, Σ is a polytopic differential inclusion of system (1),[
Ai Bi Bw,i

]
, i ∈ Z[1,N], is the vertex matrix of the set Σ,

and N is the number of the vertex matrix.

Theorem 2: Suppose that there exist a positive def-
inite matrix X ∈ Rnx×nx , a possible non-square matrix
Y ∈ Rnu×nx , and scalars α > 0 and µ> 0 such that[

(AiX +BiY )T +AiX +BiY +αX Bw,i

⋆ −µI

]
⪯ 0, (13)

for all i ∈ Z[1,N]. Then, with u(t) := Kx(t) and S(x(t)) :=
x(t)T Px(t), inequality (10) is satisfied for the polytopic
linear differential inclusion (12), where P := X−1 and
K :=Y X−1. Therefore, the system (1) is robustly invariant
in the set

Ω :=
{

x ∈ Rnx | xT Px ≤ µw2
max

α

}
.

Proof: Pre-and post-multiplying (13) by diag(P, I)
yields[

(Ai+BiK)T P+P(Ai+BiK)+αP PBw,i

⋆ −µI

]
⪯ 0 (14)

for all i ∈ Z[1,N]. Multiplying (14) from both sides with[
v(t)T w(t)T

]
and

[
v(t)T w(t)T

]T , respectively, due to
Eq.(1), it follows that the inequality

d
dt

(
v(t)T Pv(t)

)
+αv(t)T Pv(t)−µw(t)T w(t)≤ 0

is satisfied for all w(t) ∈ W . Therefore, inequality (10)
holds for the system (1). □

Remark 4: Compare (13) with the condition (6.28) in
[29] and (4.23) in [8], an extra freedom, parameter µ , is
introduced which will reduce the conservativeness of the
involved optimization problem.

4.1.2 Norm-bounded model of linear uncertain sys-
tems

If [A+∆A,B+∆B,Bw +∆Bw] ∈ Σ, where

Σ :={(A,B,Bw) | A= A+M∆(t)N1,

B = B+M∆(t)N2,Bw = Bw +M∆(t)N3},

M, N1, N2 and N3 are known matrices with the appropri-
ate dimensions and ∆(t) is a time-varying norm-bounded
matrix satisfying

σ̄(∆(t))≤ 1.

Then, Σ is a norm-bounded differential inclusion of sys-
tem (1).

In the proof of the next theorem, the following lemma
is needed.

Lemma 3 [36]: Given matrices Y , H, E of appropriate
dimensions and with Y being symmetrical, then

Y +HFE +ET FT HT ⪯ 0

for all F satisfying FT F ≤ I, if and only if there exists a
scalar ε > 0 such that

Y + εHHT + ε−1ET E ⪯ 0.
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Parallel to Theorem 2, we have the following theorem:

Theorem 3: Suppose that there exist a positive def-
inite matrix X ∈ Rnx×nx , a possibly non-square matrix
Y ∈ Rnu×nx , and scalars α > 0, µ > 0 and ε> 0 such thatΓ Bw (N1X +N2Y )T

⋆ −µI NT
3

⋆ ⋆ −εI

⪯ 0, (15)

where Γ := (AX +BY )T +AX +BY +αX +εMMT . Then,
with u := Kx and S(x) := xT Px, inequality (10) is satis-
fied for the system (1), where P := X−1 and K := Y X−1.
Therefore, the system (1) is robustly invariant in the set
Ω :=

{
x ∈ Rnx | xT Px ≤ µw2

max
α

}
.

Proof: Performing a congruence transformation on
(15) with the nonsingular matrix diag{P, I, I}, the follow-
ing inequality is obtainedPΓP PBw (N1 +N2K)T

⋆ −µI NT
3

⋆ ⋆ −εI

⪯ 0. (16)

By the Schur complement, (16) is equivalent to[
(A+BK)T P+P(A+BK)+αP PBw

⋆ −µI

]
+ ε−1

[
(N1 +N2K)T

NT
3

][
N1 +N2K N3

]
+ ε

[
PM
0

][
MT P 0

]
⪯ 0.

Since σ̄(△(t))≤ 1 and ε> 0, due to Lemma 3, the forgo-
ing equation is equivalent to[

∏ PBw

⋆ −µI

]
⪯ 0, (17)

where ∏ := AT
s P + PAs + αP with As := A + M△N1 +

(B + M△N2)K. Multiplying (17) from both sides with[
v(t)T w(t)T

]
and

[
v(t)T w(t)T

]T , respectively, in-
equality (10) holds for the system (1). □

4.2. Optimization of robust control invariant sets
In order to limit the effects of disturbances or pertur-

bations, the minimal robust control invariant set is recom-
mended. The volume of ellipsoid centered at the origin Ω
is proportional to det

(
µw2

max
α X

)
[29], which is not convex,

but monotonic transformations can render it convex. The
geometric mean of the eigenvalues [37], which leads to
minimization of det(αX)

1
nx , can be used to solve the de-

terminant maximization problem by YALMIP : a toolbox
for modeling and optimization in Matlab.

The minimization problem of the ellipsoid Ω can be for-
mulated as

Problem 1:

maximize
X ,Y,α,µ

det
(

µw2
maxX
α

) 1
nx

(18)

subject to (13)

or

Problem 2:

maximize
X ,Y,α,µ,ε

det
(

µw2
maxX
α

) 1
nx

(19)

subject to (15)

Remark 5: Both Problem 1 and Problem 2 are not
linear matrix inequalities (LMIs) optimization problems
since there exist terms of αX and µw2

maxX
α . In order to find

a possible minimum robust control invariant set by LMI
Toolbox, a search over α and µ , or α , µ and ε , is required,
respectively.

Remark 6: Both state and input constraints can be con-
sidered in the framework of multi-objective optimization
solved using LMI [4, 38].

5. ILLUSTRATIVE EXAMPLES

5.1. Example 1
Consider an open-loop unstable system

ẋ(t) = Ax(t)+Bu(t)+Bww(t), (20)

with A =

[
−1.1 2
−3 4

]
, B =

[
1
−3

]
, Bw =

[
0
1

]
.

The disturbance w ∈W ⊂ R1, where

W :=
{

w ∈ R1 | −0.1 ≤ w ≤ 0.1
}
. (21)

Choosing P = I in Theorem 1, the logarithmic norm
of system (20) with a linear control law u = Kx can be
obtained by solving the following optimization problem

minimize
K,λ

λ

subject to

2λ − (A+BK)− (A+BK)T ⪰ 0.

The obtained logarithmic norm is λ =−0.5562. Thus,
∥e(A+BK)t∥2 ≤ e−0.5562t . With the control gain K =[
0.2836 2.2992

]
, the robust control invariant set is

Ω0 =
{

x ∈ R2 | xT x ≤ 0.1798
}
.

The control invariant set yielded of the Theorem 1 is
shown by the dashed ellipsoid in Fig. 1. The control in-
variant set given by Theorem 2 is represented by the solid
ellipsoid, the control invariant set given by Eq.(6.28) in
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−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

x
1

x
2

Fig. 1. Control invariant sets of the system (20).

[29] is represented by the dashed-dotted ellipsoid, respec-
tively, where α = 4 is chosen. Since the aim to design
a robust control law is to limit the effect of disturbances
or perturbations on system dynamics, it can be seen from
Fig. 1 that Theorem 2 is the least conservative among the
three schemes.

5.2. Example 2
Consider an uncertain linear system

ẋ1 = 2(1−λ )x1 + x2 +λu,

ẋ2 = x1 −8(1−λ )x2 +λu+w (22)

with λ ∈ [0.2,0.8]. The disturbance w ∈ W ⊂ R1, c.f.
(21).

The vertex matrices of the polytopic model (12)

are A1 =

[
1.6 1
1 −6.4

]
, A2 =

[
0.4 1
1 −1.6

]
, B1 =[

0.2 0.2
]T , B2 =

[
0.8 0.8

]T , Bw1 = Bw2 =
[
0 1

]T .
Solving Problem 1 iteratively to get a robust control in-

variant set of the system (22)

Ω0 =
{

x ∈ Rnx | xT Px ≤ α
}

with P =

[
0.6789 0.0951
0.0951 0.2207

]
and α = 0.0368. The corre-

sponding linear control law is u=
[
−16.0101 −3.1349

]
x.

6. CONCLUSIONS

In this paper, schemes for the computation of robust
control invariant sets were proposed for systems with
norm-bounded uncertainties or polytopic uncertainties,
and with additive but bounded disturbances. Logarith-
mic norm as well as the functional inequality was used to
design robust control invariant sets. Furthermore, robust
control invariant sets and the corresponding state feedback

control law can be solved through an LMI optimization
problem.
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